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We explored the problem of actively stabilizing an inherently unstable system. A
method for analyzing scale-invariant time series was used to examine hand displace-
ment and rod angle of an inverted pendulum actively balanced by normal individuals.
Estimation of the Hurst exponent revealed long-term fractal correlations for more
than 3 min into the past. Two regimes, a short-term time scale of positive correlation
(persistence) and a long-term time scale of negative correlation (antipersistence),
were revealed, and their transition points were modulated by the rod’s natural fre-
quency. Such nonlocal temporal séructure constitutes a physical characteristic known
as long memory and may be considered inherent to the coordination dynamics itself.
The implications of long-memory processes are discussed in terms of the dynamical
mechanisms underlying ecological encounters and how affordances require a persist-
ing environment for their definition.

Evidence and theory suggest that the coordination of human perception and action
may be understood as a self-organizing complex system that exhibits great flexibility
by operating nearby critical points of instability. Although stability has emerged as
the central theoretical concept for the dynamical understanding of coordination in
perception—action tasks (e.g., Kelso, 1995; Turvey, 1990), the implications of a
more basic state—instability—and its associated variability have only recently been
fully recognized within the motor control literature (Newell & Corcos, 1993). Be-
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cause of the uncertainty and idiosyncracies that an overarching c.ontext of instabil -
ity affords, a behavioral system must rely on dynamical mechanisms that not onl'y
accept fluctuations as inherent to the process of control but also be able to exp'lon
such instabilities for the system's own requirements. Further, such a dYnamlcal
mechanism must be sufficiently generic to exhibit the property of generating com-
patible control strategies across many different spatial and tex'nporal. sc.ales. Indeed,
a significant characteristic of a complex system is that it manifests sumlar' p'henom‘
ena across multiple spatio-temporal scales. That is, a complex system exhlbus.pro'p‘
erties of scale invariance and self-similarity (Mandelbrot, 1982; Voss, 1989) in vir-
tue of operating nearby critical points in which fluctuations occur at all space and
time scales (Bak & Chen, 1991). ‘ .

The problem of achieving functional stability within a context of instability ap-
pears in many domains including brain dynamics (McKenna, McMullen, &;
Shlesinger, 1994), postural stability, and engineering problen'?s such as the contro
of locomotion in legged robots (Jordan & Jacobs, 1990; Raibert, 1986; Werbos,
1994; White & Sofge, 1992). Furthermore, learning, adaptation, .and long-term
development can now be conceptualized in terms of stabilizing previously unstable
patterns of behavior (Thelen & Smith, 1994; Zanone & Kelso, 1992). However,
current models typically exhibit dynamics that are restricted to stable states such as
limit cycles or point attractors. Mode-locking, if present, means fixec! phase- and
frequency-locked states, although the aperiodicity of chaotic dynamics has been
used to capture fluctuations such as those in sleep and postural control (Freeman
& Skarda, 1985; Yamada, 1995). .

Behind dynamical accounts of human perceptual-motor perf'orma'nce is the.: as-
sumption that the experimental data reflect trajectories that, given infinite time,
would have asymptotically evolved onto a stable, stationary attractor (K\.xgler &
Turvey, 1987; Treffner & Turvey, 1995, 1996). In contrast, recent biological ex-
periments have shown that stationarity is an exceptional and rare state of affalr.s.
More often than not, biological systems (including the human brain) ten‘d to avoid
stable attractor dynamics (Fuchs, Kelso, & Haken, 1992; Kelso & Ding, 1?93;
Kelso & Fuchs, 1995). Thus, although the cooperative behavior of hypothesized
neural ensembles exhibits tendencies for attraction toward fixed phase- and fre-
quency-locked states (e.g., Peper, Beek, & van Wieringen, 1995; Treffnef & Tur-
vey, 1993), a more precise analysis reveals that such ensembles exhibit only
relative coordination (DeGuzman & Kelso, 1991).

Recent studies of the neural correlates of perception—action phenome.:na have
revealed that near behavioral instabilities or critical points low—dirr?e'nsxor?al dyf-
namics govern human cortical activity as measured by highly sensitive bihemi-
spheric superconducting quantum interference devices (Fuchs et al., 1992; Kelso
et al., 1992; Kelso & Fuchs, 1995) and electroencephalogram arrays (McKénna et
al., 1994; Wallenstein, Nash, & Kelso, 1995). At these critical points, cortical ac-
tivity may be characterized by only a few spatial modes (i.e., degrees of freedo'm)
and their corresponding time-dependent amplitudes. Importantly, the relative
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phase between the neural modes is specific to the corresponding behavioral transi-
tions observed during the coordination task. Theoretical considerations together
with neurophysiological data indicate that the underlying process in such situa-
tions is not that of settling onto a stable attractor but rather that the system tends
to dwell in coherent metastable states, often inhabiting a region near instability.
Hence, by introducing a small degree of stochastic fluctuations to the model equa-
tions (assumed to reflect real biological noise), the stability of patterns may be
probed and new regimes discovered appropriate to the external conditions. These
examples illustrate a fundamental point: Generic mechanisms (inherent to the dy-
namics) exist for entering and exiting neural and behavioral states. The transitions
found in brain dynamics provide a mechanism for rapidly switching between
metastable states and, hence, confer the necessary flexibility and adaptability to
satisfy task-specific exigencies.

The preceding summary of recent discoveries in the dynamical and neurody-
namical bases of behavior does not imply that the microscopic, neural determi-
nants of behavior have been found or take precedence over other levels of descrip-
tion. Indeed, within the ecological approach to psychology, it has been emphasized
that to gain insight into behavioral principles, one should carefully determine the
appropriate grain size and units of analysis commensurate with the phenomenon to
be explained (Shaw & Turvey, 1981). Consequently, it has been suggested that the
appropriate unit and level of analysis for ecological psychology is the encounter, that
is, an event at the macroscopic, ecological scale that involves the organism inter-
acting with its environment (or another organism) via the detection of invariant
quantities within the surrounding ambient energy distribution (i.e., information;
Reed, 1996; Warren & Shaw, 1985).

To investigate the ability of an actor to harness a context of instability at the eco-
logical scale of encounters, an experimental window is required that reduces the
problem to its bare essentials but that retains the richness and complexity of the basic
phenomenon. To this end, we investigated the dynamics underlying the ability to
balance an inherently unstable inverted pendulum in a relatively stable, upright ori-
entation. Stabilizing an inverted pendulum provides a paradigmatic instance of “in-
telligent control” (Makarovic, 1991; Miller, Sutton, & Werbos, 1990; Werbos,
1994). Within a biological context, problems include those of how an actor (and a
brain) learns tostabilize and adapt over time within an intrinsically unstable and po-
tentially unfamiliar context and how the functional topology of an action system is
revealed in spatio-temporal (not instantaneous) patterns of movement variability
(Riccio, 1993; Riccio, Martin, & Stoffregen, 1992; Stoffregen & Riccio, 1988). A
classic problem in control engineering, pole balancing by human individuals exhibits
behavior quite distinct from analogous engineering models (e.g., Barto, Sutton, &
Anderson, 1982; Sutton, Barto, & Williams, 1992; Suykens, DeMoor, & Vande-
walle, 1994). The aperiodic trajectories observed depart from the highly uniform, pe-

riodic oscillations obtained through conventional techniques such as neural nets.
The problem of how to stabilize an unstable fixed point may bear some resemblance
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to the problem of stabilizing a chaotic system. Hoyever, w'hereas control of sfcal;aiontfli
system involves continually perturbing the behavto.ral trajectory 10?0 one ofan infe
nite number of preexisting unstable periodic orbits (Garf“mke , p?:;lc')'~ © ,u &
Weiss, 1992; Kelso & Ding, 1993; Schiff etal., 1994), functllonallv sta l}i“:gl safuno
stable system requires continual perturbatio.n and results in befg:\'m.or t ssewed «
tionally stable, but aperiodic. We hvpot.hesued that .the aperi lc?lty oﬁm’i—and
many human tasks requires continual active control—itdoes not exis :;:h ort—and
thatit requires aspecial kind of c(;)ntact be;gg: actc1>r9 a}]gt/ilegtg/g.rolr(x:l\:: ,1 ) i{eed
ires i ation-based coordination (Gibson, : s ; ,
?‘9‘;’2;‘*_{_“;&’:: 1990). In pole balancix;g, if contlrlol ;;;)ps, tlcxli zgl.:nc;?i): ; tf:ﬁ ;r;if(:)le
i i i rtical ance .
ﬁx?::;?:::’::};;‘;:‘:::{;;“ ;cfsifxfgr:ation}l,)ased coord‘matio'n un'derlying par-
ticular phase transitions in behavior (e.g., Kelso, 1994), one can inquire whether a

analysis focusing on the statistical properties of the ensemble average

more glba) If-organized system.

of trials can yield signatures characteristic of a dyna@@l self : O
That is, are the two levels of analyzing experimental trials (individual vs. ense

compatible, and can a global analysis provide insight into how the dynamical
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FIGURE1 Two-dimensional projection onto the ground plane of a three-dimensional pole-bal-

ancing trial,
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mechanism underlying functional stability is designed? Such a statistical dynamics
strategy has proved particularly successful in the physical sciences like thermody-
namics and statistical mechanics in which the Gibssian ensemble average plays a
prominent role (West & Deering, 1996).

Figure 1 shows the trajectory of a finger obtained from a participant freely balanc-
ing a pole in three-dimensional space. Such trajectories are quite typical of the
pole-balancing task, and when projected onto the horizontal plane (e.g., the floor),
such trajectories seem to contain little order or pattern. Indeed, they resemble aran-
dom walk, defined as a trajectory that possesses no correlation from one step tothe
next. Thus, any direction is equally likely from one moment to the next—it is ran-
dom. Given this resemblance, we investigated whether the kinematic trajectories
of the putative variables specific toaction (hand position) and those specific toper-
ception (rod angle from vertical) conform with stochastic dynamics. A stochastic
time series analysis technique involved calculation of the Hurst exponent todeter-
mine whether some degree of order was embedded within the apparently disor-
dered perturbations produced by the hand during balancing.

METHOD

Apparatus

A one-dimensional pole-balancing apparatus was constructed, consisting of an alumi-
num rod constrained to pivot about a precision bearing inserted into the base of the
rod. The pivot was attached to a linear bearing and, hence, restricted the
pivot-housing assembly to slide along a one-dimensional steel track 180 cm in length.
Toppling motion of the rod was constrained to the two-dimensional, frontal plane
(Figure 2). The complete assembly was positioned on a table adjusted towaist height,
Six different aluminum rods were tested (30, 45, 60, 75, 90, and 105 cm) with corre-
sponding natural frequencies of 0.91, 0.74, 0.64, 0.57, 0.53, and 0.49 Hz, respectively,
and natural periods of 1.10, 1.35, 1.56, 1,74, 1.90, and 2.06 sec, respectively. The
whole apparatus was positioned on a table such that the pivot of the rod was 1 m above
the floor, which approximately corresponded to the waist height of a participant.

Participants
Four normal, right-handed graduate students (two men and two women) from

Florida Atlantic University participated in the experiment, None of the partici-
pants had prior experience of the pole-balancing task.

Procedure

Each participant was asked to balance the rod for as long as possible or until the ex-
perimenter indicated the trial was complete. Displacement time series were re-
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FIGURE2 Pole-balancing apparatus showing one-dimensional track along which the bottom
of the rod plus hand can laterally move.

corded at a sampling frequency of 100 Hz using an Optotrak camera (Northern Dig-
ital, Waterloo, Ontario, Canada) with infrared light-emitting diodes placed at the
bottom, the middle (center of gravity), and the top of the rod. The displacement
and the angular deviation from vertical was detected in the frontal plane, providing
the two time series from which further measures were computed. The participant
was free to stand and move laterally in front of the balancing apparatus seton the ta-
ble. Thus, the participant actively controlled the inverted pendulum by using his or
her forefinger and thumb to grip the pivot housing and, hence, sliding the bottom of
the rod from side to side. To facilitate acquisition of the balancing skill, individuals
attempted to balance the longer (and easier) rods before attempting the shorter
(and more difficult) rods. For reasons of subsequent data analysis requirements, we
asked participants to attempt to balance for as long as possible up to a possible limit
of 5 min. Three consecutive 5-min trials were required before the participant pro-
ceeded to the next shorter rod. At the sampling frequency used, each 5-min trial re-
sulted in a time series consisting of 30,000 data points.

Analysis

The relation between noise and temporal random processes was emphasized by
Mandelbrot (1982) in his development of fractional Brownian motion. This con-
cept permits the quantification of the type of noise or randomness underlying a sto-
chastic process. In pure Brownian motion, no correlation exists between the direc-
tion or size of the steps in a time series; it is purely random. Ina fractional Brownian
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process, some degree of “constrained randomness” may exist, and when it does, the
correlations simultaneously exist across multiple time scales. Fractional Brow;lian
motion is, therefore, related to the geometry of self-similar structures and its quanti-
fication through the fractal dimension (Feder, 1988; Mandelbrot, 1982; Voss
1989). Such fractal temporal structure is not only of mathematical interest l;ut may:
be due to underlying generative dynamical mechanisms (Liebovitch & Yang, 1997;
Mannella, Grigolini, & West, 1994). , ’

Consider as an example the process that generated the spatial, two-dimen-
sional, x(t}, ¥(t), trajectory ot trail shown in Figure 1 (trails do not possess a tempo-
ra'\l dimension). If we then, as is typical, plot the time series of this trail for a single
filfnension—for example, x(t) versus t—we obtain the trace of the variable x(t) that
is implicit within the spatial trail. Typical traces of simulated data are shown in Fig-
ure 3, Note that the trace is a time series of the integral or sum of the increments
Ax(At) = x(t;) — x(t;). For pure Brownian motion, the increments, Ax, have a‘
Gaussian distribution (i.e., fractional Gaussian noise or white nois;) a;ld have
mean square displacement or variance:

(Ax : ) o< At (1)
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FIGURE3 Traces of six mathematically generated time series of known Hurst exponents, Hs = .5
.6,.1,.75, .8, and .9, where H = .5 corresponds to pure Brownian motion. .
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where the angled brackets denote an ensemble average calculated over many sam-
ples. Hence, the step size, Ax, increases as Jt, which is the defining characteristic of
arandom walk. In pure Brownian motion, the mean square increments only depend
on the time difference, At, where all ts are statistically equivalent. Hence, Brownign
motion possesses the property of independent increments, and future changes in
x(t) are completely independent of previous increments (Voss, 1992).

The relation in Equation 1 can be generalized to include motion that is not
strictly Brownian, that is, fractional Brownian motion (Mandelbrot, 1982):

(Ax2 ) oc A" (2)

where the parameter, H, has a value 0 < H < 1. Known as the Hurst exponent, His a
measure of the dispersion or spread generated by a fractional Brownian process. It de-
scribes the type of correlation that exists between some point in the time series of the
process and all other points in the past. For pure Brownian motion, H= .5', and 'Equa—
tion 1 is reproduced describing the situation of independent increments in which no
correlation exists between some point in the present and all points in the past. Suchbe-
havior is completely random (Figure 3, H = .5). However, if H # .5, global correlation
exists at many and arbitrarily long time scales. If H > .5, there is positive correlation c?f
the increments, and the direction of change in past increments is preserved; this is
called persistence. The positive correlation coefficient will increase from 0 to 1 as H in-
creases from .5 to 1. For example, increases (or decreases) in the past will tend to be fol-
lowed by increases (or decreases) in the future. Conversely, with H < .5, there is nega-
tive correlation of the increments, and the direction of past increments is reversed; this
is called antipersistence. The negative correlation coefficient will decrease from O to -5
as H decreases from .5 to 0. That is, increases (or decreases) in the past will tend to be
followed by decreases (or increases) in the future. Processes with H # .5 and, hence,
long-range correlations between the increments, are said to exhibit long-run or
long-memory effects (Beran, 1994; Mandelbrot & Wallis, 1969). Figure 3 shows t.he
time series of six data sets of known H mathematically generated using the midpoint
displacement algorithm (Peters, 1991; Voss, 1989). Itis clear that, as H changes from H
= .5 (random walk) through H = .9 (high positive correlation; persistence), the profile
becomes increasingly smoother with less change in direction from moment to moment.
Note that each time series in Figure 3 displays a trace of the increments, that is,
the integral or running sum of the increments. .
Scalingrelations such as that in Equation 2 imply that asingle, predominant scale of
measurement does not exist and that the pattems exhibited will be fractal or
self-similar at multiple spatial scales, temporal scales, or both. Thus, the same kind of
correlation results as the times series of increments is viewed at increasingly greater
magnification levels. However, the scalingin so-called “random fractals” is not exactly
equivalent to the self-similarity of spatial fractals (Mandelbrot, 1982; Voss, 1989).
Given the composition of Equation 2, tomagnify both temporal and displacement axes
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by similar amounts, different scaling factors are required. Precisely, when H # .5 the
time series is self-affine rather than self-similar, meaning that, if the temporal scale is
increased by a factor N, the spatial scale need only be increased by the smaller factor,
NH, Thus, under magnification, the spatial dimension enlarges faster than the tempo-
ral dimension. Thus, although a trace (in time) may be self-affine, the trail (in space)
will be self-similar. Because self-similarity and self-affinity have the property of dilation
invariance, the fractal analysis of temporal perception becomes an essential addition to
the psychophysics toolbox (e.g., Gilden, Thornton, & Mallon, 1995).

The Hurst exponent for a time series can be estimated using the technique of vari-
ance analysis as given in Equation 2. Experimentally, this involves recording the ki-
nematic time series (the trace) of some variable, x, and then, in correspondence with
Equation 2, retrieving the exponent by calculating the slope of the linear region in a
log-log graph of Ax? versus At (e.g. Collins & De Luca, 1993, 1994, 19952, 1995b;
Mitchell, Collins, De Luca, Burrows, & Lipsitz, 1995; Newell, Slobounov,
Slobounov, & Molenaar, 1997; Riley, Mitra, Stoffregen, & Turvey, 1997; Riley,
Balasubramaniam, Mitra, & Turvey, 1998; Treffner & Kelso, 1995b). However,
problems exist with the estimation of H using this technique because periodicities in
the undetlying process may emerge as prominent “small-amplitude, low frequency
oscillations” (Collins & De Luca, 1995b, p. 61) in the log-log graph, thus eliminating
the possibility of a valid linear fit (see also Newell et al., 1997; Riley et al., 1998;
Treffner & Kelso, 1995b). One method of alleviating the problems due to inherent
periodicities is to average over trials and over participants to smooth out the variabil -
ity (Collins & De Luca, 1993). Further problems remain when attempting to deter-
mine the extent of the linear region, especially if the two moderately linear regions
are connected by a small smoothly curved “elbow.” This problem is addressed either
by estimating the linear region by eye or including points until some threshold for the
linear fit is passed (e.g., 7 = .985; Riley et al., 1997). Finally, it has been shown that
the above variance analysis method tends to underestimate the time of transition
from persistence to antipersistence by as much as an order of magnitude when com-
pared to alternative methods (discussed next; Liebovitch & Yang, 1997),

An alternative approach to the variance analysis method of estimating H is
rescaled-range (R/S) analysis. This method was discovered and employed for
hydrodynamical analysis by Hurst (1951) in an analysis of the pattern of annual
discharge for the Nile River and its long-term storage by the Aswan Dam. The ratio
of the range relative to the standard deviation, R/S, describes how the dispersion
(range) of a measured variable within some temporal window, At, increases (or de-
creases) as At increases (Bassingthwaighte, Liebovitch, & West, 1994; Feder,
1988; Liebovitch, 1998; Liebovitch & Todorov, 1996; Schepers, van Beek, &
Bassingthwaighte, 1992). R/S analysis involves calculating the range, R, for the
original data in a time series for multiple nonoverlapping windows, At, where At is
chosen to be a power of 2 (to allow equal logarithmic binning), and the maximum
At is no greater than half the maximum length of the time series (to ensure at least
two samples at the largest window size; Bassingthwaighte et al., 1994). The present
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algorithm was tested for accuracy by applying it to a set of time series that were
mathematically generated to have a known Hurst exponent (Peters, 1991). Be-
cause this experiment involved trials of 300 sec in duration, the values of At chosen
were 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, 40.96, and
81.92 sec. For a given At, the range, R, was normalized by the standard deviation, S.
Note that in accordance with standard procedures (e.g., Bassingthwaighte et al.,
1994; Churilla et al., 1996), S is computed using the increments, Ax, rather than
the raw recorded values of the time series— for example, hand displacement, x(t),
or rod angle, 6(t). A mean value of R/S was then computed from the various esti-

mates of R/S for given At.
From an analysis of approximately 900 natural time series (e.g., lake levels, tree

rings, sunspots, mud varves), Hurst developed an empirical power-law relation be-

tween R/S and At (Feder, 1988):
(3)

B—=At“
S

From Equation 3 it is possible to estimate the value of H from the gradient of the
graph of log(R/S) versus log(At), using least squares linear regression to yield both
an estimate of H and an accuracy of the linear fit. If a linear region is found across
several orders of magnitude of At, then scaling is said to exist, and the Hurst expo-
nent is an estimate of the global correlational structure across multiple time scales.

Although scaling may exist within a time series, inspection of the log—log graph of

R/S versus At may indicate that a single linear fit is impossible, possibly implying that
more than a single scaling region exists. In such cases, two linear regions can some-
times be found with a transition point in which one regime switches to the other. For
example, persistence (H > .5) may exist over a short-term time scale, and
antipersistence (H < .5) may occur over a long-term time scale. Such a bilinear re-
gion implies that the underlying dynamic may involve a unitary process that exhibits
both short-term and long-term behavior (e.g., Newell et al., 1997; Treffner & Kelso,
1995b, 1997). Alternatively, separate open-loop and closed-loop control processes
have been proposed to establish the persistence and antipersistence regions found in
postural balance data (Collins & DeLuca, 1993), although the interpretation of per-
sistence as a signature of an open-loop postural control process has been questioned
(Newell et al., 1997; Riley et al., 1997; Riley et al., 1998).

RESULTS AND DISCUSSION

Strategies of Control

Inspection of the displacement time series revealed that the top of the pole was usu-
ally displaced the least in comparison to the middle and the bottom of the pole (Fig-
ure 4A). Hence, the resultant behavior of the actively stabilized rod appeared to

(A) Jiggling Strategy B = Bottom of rod

T = Top of rod
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FIGURE 4 (A) Time series of a representative trial showing the three strategies that partici-
pants typically invoked while balancing a rod using the one-dimensional pole-balancing appara-
tus. (B) Phase plane representation of the same data depicted in (A). Cycles within cycles were
apparent, indicative of the lack of simple limit-cycle behavior.
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pivot around the top of the pole (as in a normal gravity pendulum) rather than the
bottom (as in an inverted pendulum).

The position-velocity phase plane suggested that the dynamics were not simply
that of a periodic limit cycle typical of a simple gravity pendulum and were not that
of the asymptotic convergence onto minimal or near-zero error as seen in the
“bang-bang” control strategies used in engineering and neural network solutions to
the pole-balancing problem (e.g. Miller et al., 1990). Instead, the phase plane con-
tained regions indicative of differential stability. Tight cycles corresponded to rela-
tively periodic motion due to a “jiggling” strategy of stabilization. This corresponds
to a strategy whereby alternating forces of comparable magnitude are applied in or-
der to maintain zero net displacement of the pole. This was the closest analogy to
bang-bang control that we observed.

In contrast to the jiggling strategy, larger circuitous cycles in the phase plane of
Figure 4B (or the linear regions in Figure 4A) indicated a “running” strategy
whereby the hand and the top of the pole were both displaced in the same direction
until an overcompensatory motion was necessary to avoid the impending
end-of-track constraint. Typically, once the danger of this constraint had been
avoided, another bout of jiggling began. A third, mixed strategy was also observed
and appeared to be a composite of the jiggling and running strategies (Figure 4A).
Hence, the resultant motion did not appear to be due toa dynamics based on a sta-
ble, fixed point.

When viewing the phase portraits and time series together, similarities were
noted between the phase portraits of chaotic and intermittent dynamics. For ex-
ample, inspection of the phase portrait in Figure 4B revealed tight cycles that in-
termittently change into larger circuitous excursions reminiscent of the arche-t
ypal manifold of chaotic phenomena, namely, a homoclinic tangle in phase
space. The short-term cyclicities and periodicities that accompany jiggling were
interspersed with epochs of large-scale escape motion, which suggests a possible
correspondence with the homoclinic tangle nearby an unstable fixed point in
nonlinear dynamical systems (Kelso & Ding, 1993; Strogatz, 1994). Indeed, in a
perception—action coordination experiment related to this task, the most general
nonlinear equation exhibiting chaotic trajectories (the Shilnikov attractor) was
recently shown to underlie the human brain’s global activity (Kelso & Fuchs,
1995).

From such a rich phenomenology, a simple taxonomy of stabilization control
strategies is suggested (a) to go with the intrinsic tendencies of the system (persis-
tence), (b) to go against the system (antipersistence), (c) to jiggle the system, or (d)
all of these. Although useful for an initial understanding of the global strategies at
work, this taxonomy does not necessarily imply that independent control strategies
exist and that switching between them is required. Rather, the taxonomy impels
further development in terms of searching for a single dynamical mechanism that
contains implicit within it these various control strategies.
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Global Temporal Structure

R/S analysis was conducted on the time series of both the hand displacement and

the rod’s angle from vertical for each 300-sec trial. Figures 5A and 5B show the

Hurst plot for hand displacement and rod angle for a single representative partici-

pant. A prominent discontinuity between two linear scaling regions was apparent.

There was low between-rod variability, as indexed by the standard error bars. The

Hurst plots averaged across all participants for a single long rod (105 ¢m; Figure 5C)

and a single short rod (45 cm; Figure 5D) are also shown. It was again apparent that

between-subjects variability was low as indexed by the standard error of R/S.

In Figure 6, the Hurst plot of hand displacement for the R/S data averaged
across all four participants and all six rod lengths is shown. A linear region was
found over a short-term time scale from At = 0.02 to 2.56 sec (y = 0.95x + 1.58, 12
= .999; Figure 6B). This was obtained by performing the linear regression over t,he
first eight points in Figure 6A. The inclusion of the ninth point at At = 5.12 sec
yielded a marginally altered regression (y = 0.926x + 1.556, r2 = .998). Because
the slope of the linear region represents the Hurst exponent, and considering only
the slope of the first regression equation, persistence (H > .5) exists over the
short-term scale (H = .95). Random surrogate data was created by randomly reor-
dering (shuffling) the raw data to remove any possible correlation. In contrast to
the previous results, analysis of the reshuffled data yielded H = .5 as expected for a
completely random time series.

A linear region was also found over the long-term time scale from At = 10.24 to
81.92 sec (y = 0.291x + 2.014, r2 = .992; Figure 6C). This was obtained by includ-
ing the last four points in Figure 6A in the linear regression. The exclusion of the
point at At = 10.24 sec (to yield the last three points) produced a perfect linear fit
fy = 0.2?9;( +2.07, r:; 1) .SConsidering only the slope of the first regression equa-
ion, antipersistence (H < .5) exists fo! - = i
e tenee U1 )l r the long-term scale (H = .29). Reshuffling

As At = 2.56 sec can be considered the upper bound on the short-term region of
persistence and At = 10.24 sec can be considered the lower bound on the long-
term region of antipersistence, the transition time, Ty, between persistence and
antipersistence can be inferred to occur in the vicinity of the log-scaled point mid-
way corresponding to Tean, = 5.12 sec.

R/S analysis was also conducted on the time series of rod angle. In Figure 7, the
Hurst plot for rod angle whereby averages were taken across all participants and all
rod lengths is shown,

. As in the case of hand displacement, it can be seen that, for rod angle, there is a
linear region over a short-term time scale from At = 0.02 to 1.28 sec (y = 0.936x +
1.556, 1 = .998; Figure 7B). This was obtained by performing the linear regression
over the first seven points in Figure 7A. Inclusion of the eighth point at At = 2.56
sec yielded a marginally altered regression (y = 0.9x + 1.556, v = .998). Con-



(A) Hand Displacement,
2.5{ Participant 1, «
5| All rods . ° (A) 3
L ]
g . 2.5 Hand Displacement
% 1.5 . o ® o ®
I S 1 7 em
] . Q 1.5 . ® terrp
~ regi
of— w0 1{ Short-term © C:;)s§over gion
S ¢ region  ° gion
(B) ,IRod Angle, NI . . °
Participant 1, « 0+ —e
L.751 ANl rods .
1.5 .
o 125 . .01 1 1
g 7; [ AT (S) 100
3" .5 . B) 2
28 . Short-term: f
° : ) 1.51 Persistence
(©  |'Hand Dispiacement, ' ) g H=.95
2.5| Long rod: 105 cm, : " . & 1
2 All Participants ¥ 50
o . " S
g 1.5 L) .5
§ . . 0 y = 95x + 1.58,r = 999
.5 .
*
° -1.§ -1 . 5 .
' | (92 8) 0 @ ;> )
(D) | Hand Displacement, ©) 0 8
2.5] Short rod: 45 cm, ; ¢ 8 ¥ 2.6{ I ong-term:
2 All Participants 3 : g rm
o o Antipersistence
S 1.8 . 2.5 H=29
A
R $
.5 . a0 2.4 [)
.02 16 128 "10.24 40.96 2.3 , ,
y = 291x X =
AT (s) - + 2,014, r“ = 992
. 1.2 1.4 1.6 1.8 2
FIGURES Hurst plots exhibiting a crossover between two linear regions, together with the 10.2 5) LOg ( AT) (81.9 )
variability around averaged data points. (A) Hurst plot for the hand displacement variable.
Data are shown for one participant and have been averaged across all six rod lengths. (B) Asin
(A) but plotted for rod angle. (C) Hurst plot for hand displacement of a single long rod aver- FIGURE 6 Hurst plots fo .
aged across all participants. (D) Hurst plot for hand displacement of a single short rod averaged lengths. The val:: &Ht;b;l:;n:::g:;exzs";;:ﬁ: :rctl‘g:s all “%a;ticipant: and all rod
e o e Bl e
117




DYNAMIC ENCOUNTERS 119

sidering only the slope of the first regression equation, persistence (H > .5) existed

(A) 2| Rod Angl e ® * ° for the short-term scale (H = .94).

o ngle « * Long- A linear region was also found over the long-term time scale from At = 5.12 sec
s . \/\/ term ! to At = 81.92 sec (y = 0.146x + 1.814,+2 = -974; Figure 7C). This was obtained by
& Crossover region ’ performing the linear regression over the last five points in Figure 7A. The exclu-
@ . region sion of the eighth point at At = 2.56 sec (to yield the last 4 points) yielded a mar-
50 Short-term o ginally altered regression (y = 0.124x + 1.849, 12 = -987), and exclusion of the
3 region ninth point at At = 5.12 sec (to yield the last 3 points) yielded a perfect linear fit &y
.S = 0.107x + 1.879, 2 = 1.0). Considering only the slope of the first regression

q ® equation, antipersistence (H < .5) exists for the long-term scale (H = .15),
e Because At = 1.28 sec is the upper bound on the persistence region for rod angle
.01 1 1 10 100 and At = 5.12 sec is the lower bound on the antipersistence region, the transition
AT (s) between persistence and antipersistence is inferred to occur in the vicinity of the

log-scaled point midway corresponding to Tgn: = 2.56 sec.

From the preceding, one may conclude that persistence and antipersistence oc-
' curred as prominent characteristics of active stabilization. Hence, the particular
style of coordination exhibited scale independence, and the extent of this
scale-independence was amplified in the long-term region such that anticorrela-
tion existed between points separated by as much as 80 sec. Importantly, a transi-
tion occurred between persistence and antipersistence for both variables of hand
displacement and rod angle. Further, the transition occurred at an eatlier time for

= 998 the angle (T yun, = 2.56 sec) than for the hand (T = 5.12 sec).
ol To more accurately pinpoint the time of the transition from persistence to
v ' antipersistence, we used an alternative method of revealing the transition point be-
-2 tween persistence and antipersistence (Treffner & Kelso, 1997; Voss, 1994). In
02 s) (1.3 s) this method, local estimates of the Hurst exponent, Hi,, are obtained from the lo-
cal gradients formed by pairs of points in the Hurst plots of log (R/S) versus log (At),
The value of each local slope is then plotted against the values of At corresponding
to the midpoint of the logarithmic axis from which the slope is calculated. The
transition point, T, between persistence and antipersistence is the time, At, at
which the graph of the estimates of Hyoca intersect the line where H = .5, In Figure
8, the plot of Hixc. averaged over participants and rods for hand displacement and
rod angle is shown. This graph corresponds to the local slopes of the pairwise seg-
ments within Figures 6A and 7A. For all participants, rods, and the purported con-
trolled variables (hand and angle), the point in which their corresponding Hi,;

(B) 1.6] Short-term:
Persistence
1.2 H= 94

y = 936x + 1.556, r®

Long-term:
Antipersistence
H=.15

y = .146x + 1814, r? = 974 graphs crossed over the horizontal line at H = .5 was calculated. The crossover

points in units of log(t) were then entered into an analysis of variance with inde-

1 96 .8 1 1.2 14 1.6 1.8 2 pendent variables of rod length (short through long) and controlled variable (hand
(5.1 s) Log (AT) (819 5) and angle). The main effect of controlled variable was significant, F(1, 15) =

292.74, p < .001. Thus, the transition from persistence to antipersistence occurred
earlier for the rod angle (T, = 2.17 sec) than for hand displacement (Teans =
7.69 sec). It is instructive to compare these transition times with those obtained
from the linear-region method of estimating the transition point (T = 2.56 and

Il participants and all rod lengths. The
FIGURE 7 Hurst plots for rod angle averaged across al . : '
values of H obtained are indicated. (A) Both short-term and long—.term. regions an.d their cross
over point. (B) Short-term persistence region. (C) Long-term antipersistence region.

118




120  TREFFNER AND KELSO
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FIGURES Local-slope Hurst plot for hand position and rod angle averaged across ?sll pard:x:[ants
and all rods. The earlier transition from persistence to antipersistence for the rod angle is apparent.

i i . Averaging the results
le and hand displacement, respectively) .
?;;risfbcft}fmorl;\::()t?\sgsg, ;:. = 2.37 and 6.41 sec for rod angle and hand displacement,
i l ) 0 . . .
resp:liﬁiigyh neither rod length nor its interaction with controllecli vanablz vt:i ;15) !
ively, there was a linear orde
. JE(5,15) = 1.677and F < 1, respgctwe , . d g o
:fxfs:z:)n ;(>oint by rod length and by fand displacement (angles. ’;';,,.é 401 .::(,128.61
2.15, 2.20, 2.28, and 2.39 sec; hand: Tean = 6.19, 6.86, 8.13, 8.39, 8. . ,1 )
se;c ’corresponding to 30-, 45-, 60-, 75-, 90-, and 105-cm rods respectively).

Very Long-Range Correlation

Previous studies of long memory in postur:l c;mu:f)l (Collins &‘]‘?; é:it;?::; l:;:,e,
i i long record of performance co '

suggested that if a sufficiently f perfo et (orhe

of boundary conditions, such as the base of suppo :

l::\;?g;—etrack constraint in the present task), eventually Ax2 would sat‘uraterlfo : \:)12,

stant value and might, for example, yield H = [i (ii.e., a 1oss of ec;i;r:l;et;oor:‘)ci ! 1; valu-

imi g-term
ate whether there was such an upper limit on the long- O e
- | (maximum At = 81.92 sec), g

mum value of At calculable for the 300-sec tria 21 92 sec), asinele
ici i ience in the task and had developed so:

participant who had previous experi hecaskand bad deyeop e el 30

ing the pole attempted continuous ba ancing 10
l:ilrim;lirt\lsout :t:;’ break in performance. That is, if the participant dropped the rod
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or for any reason distupted the continuity of balancing, the trial was abandoned,
and a new attempt initiated. After many attempts to produce a single contiguous
bout of balancing, the participant succeeded in producing a 30-min time series
(36,000 points; sampling rate = 20 Hz) from which the Hurst exponent was recov-
ered using both the linear region and local-slope methods. Because the time series
was 1,800 sec in duration, the values of At chosen for the R/S calculation were 0.1,
0.2,0.4,08,1.6,3.2,64, 128, 25.6, 51.2, 102.4, 204.8, 409.6, and 819.2 sec.

Using the standard R/S method, two regions were apparent in the Hurst plot for
hand displacement. A linear region of the short-term time scale was found from At
= 0.10sec to At = 3.20 sec (y = 0.873x + 0.874, v = .998), obtained by perform-
ing the linear regression over the first six values of At. Inclusion of the seventh
point at At = 6.4 sec yielded a drop in the linear fit (y = 0.833x + 0.853, 72 = .995),
Therefore, considering the slope of the first regression equation only, persistence
(H = .87) existed over the short-term time scale.

A linear region was also found for the long-term time scale from At = 12.80 sec
to At = 204.80 sec (y = 0.254x + 1.351, r2 = .990). Inclusion into the regression of
the last two points at At = 409.6 sec and 819.2 sec yielded a drop in the linear fit (y
= 0.208x + 1.421, 12 = .969). However, the last two points, although producing a
comparable slope (slope = 0.159) were not considered sufficiently linear with the
preceding points to constitute inclusion. Considering, therefore, only the first re-
gression, antipersistence (H = .25) existed over the long-term time scale.

Because the upper bound on the linear persistence region was considered to be
At = 3.20 sec, and the lower bound on the antipersistence region was considered to
be At = 12.80 sec, the transition point between persistence and antipersistence oc-
curred in the vicinity of the log-scaled midpoint corresponding to T,,,, = 6.40 sec.
To ascertain the reliability of the estimated transition point, an analysis was con-
ducted using the local-slope method. In this case, a value of Tenn, = 9.68 sec was
found. This may be considered comparable to the preceding value as it is also lo-
cated between the lower (3.20 sec) and upper (12.80 sec) bounds. Averaging from
the two methods yields Tom = 8.04 sec for the persistence—antipersistence transi-
tion in hand displacement for balancing a long rod by a skilled participant.

Of interest is the magnitude of the upper bound on the long-term antipersis-
tence region, At = 204.8 sec. Thus, on average, any two points separated by more
than 12.8 sec and up to 204.8 sec (i.e., 3.4 min) remained anticorrelated. That is,
there was a tendency for the controlling hand to oscillate in alternating directions
during all temporal intervals separated by between 12.8 sec and 3.4 min.

A similar analysis was conducted for the time series of rod angle obtained during
the 30-min trial. However, instead of two linear regions spanning the Hurst-plot as
observed for hand displacement, three linear regions were apparent. The first lin-
ear region, corresponding to the usual short-term time scale, was found from At =
0.10secto At = 1.6 sec (y = 0.861x + 0.862, 1 = .997). This was obtained by per-
forming the linear regression over the first five values of At. Inclusion of the sixth
pointat At = 3.2 sec yielded a drop in the linear fic (y=0.794x + 0.822, 12 = .989).
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Using the first regression only, persistence existed over the short-term time scale
= .86). ‘ _ _
(HThe se)cond linear region was found over a time scale fror'n At = 3.2.0 sec to Ath
204.80 sec (y = 0.271x + 1.027, 7 = .998). Thus, antipersistence existed over the
lon ' term time scale (H = .27). By inference, the transition occurreczl ;é the
lo —gscaled midpoint between 1.6 sec and 3.2 sec corresponding to 'I;:,,,. = .a : :::
T}g\e analysis was also conducted using the local-slope method. In ;_ is C'isez, 2 ran
sition value comparable to the linear region method was found 3 T = t erSis:
Averaging both methods yielded Teany = 2.19 sec for the persistence—antip
nsition in rod angle.
ten;:ot“r:ver a third linear, very long-term, time scale for rocj angsl)e9 :;as Bf:uncl ir:)l:r;
, = + 0.537, 7t = . Becau:
= .80 sec to At = 819.20 sec (y = 0.478x 72 = .994). Be: ;
ﬁ; e i??hxs region corresponded to an exponent H = .5, the 1mphcatlot:l 13 that b;
tw:en At = 204.80 and At = 819.20 sec, the motion of the rod a‘ngle. i notbe
hibit self-similar correlations characteristic of persistence 'c;nd antlpermsg;e;cso r::,
indi ion. Hence, the very long-term re -
i d, indicated pure random motion. \ ‘ ‘
::)t;:ed to ordinary Brownian motion whereby no correlation existed between
ints. '
PO‘;‘n Figure 9, Hiocal estimated using the local-slope method for the.rod afngle.dumi;g—
the 30-min trial is shown. As can be seen, there is an extend'ed region (; antipers
tence that eventually returns toward H = .5 beyond approximately 3.3 min.
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8 random
.7{ Persistence ;ehav;or
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. iti Loss of
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Local-slope Hurst plot for the extended durat.lof\ tria
::\SiEgRETlgxe retu:n mP; = .5 is apparent, indicating a limit on the long-memory effect of
antiper'sistence and the loss of all correlation beyond 3.3 min.
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Insum, for the very long trial, comparable Hurst exponents were found for persis-
tence of both the hand (H = .87) and the rod angle (H = .86) and for antipersistence
of the hand (H = .25) and the rod angle (H = .27), and an additional very-long term
region wasrevealed for the rod angle at which H = .5,and the long-memory effect was
lost. Note that for persistence in the hand H = 87, which was less than the average
value of H = .95 obtained with the lesser skilled participants. Because only one
highlyskilled individual was tested, our conclusions regarding skilled performance in
this task are tentative. Given this caveat, examination of Figure 3 would imply that
the highly skilled individual’s hand motion was less smooth (less positive correla-
tion) than that of the lesser skilled participants.

GENERAL DISCUSSION

In contrast to pure Brownian motion for which a Hurst value of H = .5 implies a
lack of correlation between some point in a time series and all others, this analysis
revealed thaton average, H = .95 (Hy,.g = .95 and Hange = .94) for all points tempo-
rally separated by up to approximately 3 sec (Figures 6 and 7). In correspondence
with the “running” strategy of rod control shown in Figure 4A, H = .95 implies per-
sistence in the changes in displacement of the hand and that increases in hand posi-
tion (or rod angle) tend to be followed by further increases, and similarly, decreases
tend to be followed by decreases. That is, one can consider the hand’s motion con-
tinuing in the same direction or the pole pivoting and falling in the same direction
for short periods of up to 3 sec. However, it should be noted that R/S analysis has
been shown to slightly underestimate the true Hurst exponent when H > .75
(Bassingthwaighte et al., 1994; Liebovitch & Yang, 1997; Schepers et al., 1992).
Given such possible underestimation, the analysis indicates that the true degree of
persistence may be even greater than estimated and even closer to unity.

In contrast to the short-term persistence regime, for all points in the hand and
angle time series separated by more than approximately 5 sec, the average Hurst
exponent was H = .22 (Hpung = .29; Hynge = .15; Figures 6 and 7). Such antipersis-
tence or the tendency for reversals implies that increases in the past tend to be fol-
lowed by decreases in the future and vice-versa.

Averaged across all rods and participants, the transition from persistence to
antipersistence occurred earlier for rod angle (T = 2.5 sec) than for hand dis-
placement (Tyars = 6.5 sec). Importantly, it was found that antipersistence extended
surprisingly far into the past. The current position of the hand or angle remained cor-
related with events that had occurred as much as 80 sec previously. To the extent
that there is a demonstrable long-range correlation with prior events, it might be said
that the past continues to have an influence on the present. Alternatively, one could
choose to reject such a past-present distinction and, instead, define the act called
“balancing” as a macroscopic event having extended spatio-temporal dynamic struc-
ture (cf. Riccio, 1993). Indeed, as regards basic psychological theory, it is quite entic-



124  TREFFNER AND KELSO

ing that long-term fractal correlation is referred to as long memory (Beran, 1994;
i ; Liebovi Yang, 1997).
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straints of an intrinsically unstable system operating within a bounded potential
and an active perceptual system attempting to maintain upright balance.
In examining previous evidence of nonlocal temporal structure in naturally un-
stable systems, unlike the dual-scaling regions in the current data, single-valued
Hurst regimes have been found. In a study of metronome-paced finger tapping, Chen
etal. (1997) compared both the time series of the temporal errors between taps and
the metronome pulses and the time series of the intertap intervals. Only for the error
time series did they find persistence (H = .72) after averaging over trials and partici-
pants. It was concluded that the long-memory effect in their task was due to intrinsic
random noise in the nervous system compounded with delays due to a sensory—mo-
tor feedback loop. However, no crossover regime was found. Similarly, a study of the
interstep period in human walking around an athletic track found that under
self-paced conditions at either slow, medium, or fast speeds, walking exhibited persis-
tence (H >.5) forup to 1 hr into the past (Hausdorff, Purdon, Peng, Ladin, Wei, &
Goldbetger, 1996). However, when the walkers synchronized their locomotion with
a metronome, the long-memory effect of persistence disappeared. This result may
appear at odds with the data of Chen et al. (1997) that showed persistence even un-
der strict synchronization conditions. However, Chen and colleagues emphasized
that misleading results can be obtained depending on the type of raw time series em-
ployed as input to the analysis of long-memory effects. They concluded that the error
time series was, at least in this class of perception—action tasks, a candidate for a type
of variable that produces a “fundamental time series.” Interestingly, this notion is
none other than the relative phase (and its fluctuations) that has been identified as a
significant collective variable or order parameter in many other studies, starting with
the well-known phase transitions in bimanual coordination found by Kelso (e.g.,
1981, 1984),
This brings us to an overarching problem in motor control and coordination
and complex systems in general, which is that neither the relevant variables nor
their dynamics are known a priori but have to be identified. In laboratory studies of
biological coordination, the strategic focus on nonlinear qualitative change has
proven enormously fruitful for both theory and experiment over the last two de-
cades (e.g., Haken, 1996; Kelso, 1995). The reason is that if a complex multivari-
able system is changing smoothly and linearly, it is difficult to distinguish the vari-
ables that matter from those that do not. Observations of qualitative change (al-
ways accompanied by quantitative effects) have allowed the identification of
collective variables characterizing the system's coordination states and their dy-
namics (equations of motion). Importantly, near critical points various theoreti-
cally motivated measures (e.g., fluctuation enhancement, critical slowing down,
etc.) have enabled tests of predicted features of self-organization associated with
the identified coordination dynamics (Schéner & Kelso, 1988).
This methodology of long-memory analysis offers a potentially useful comple-
ment to the transition methodology used in many laboratory tasks. Moreover, it
may prove helpful outside the laboratory frame of reference to encompass more
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naturalistic settings (e.g., long-term epidemiological studies) and investigations of
so-called “abnormal” motor performange (Treffner & Kelso, 1996). For example,
well-defined transitions from persistence to antipersistence may offer a means of
identifying relevant quantities in contexts in which it is not possible to directly ma-
nipulate control parameters. Moreover, the transition points themselves may be
revealing of processes acting on different time scales (e.g., demarcating different
kinds of memory). In this respect, variables that do not exhibit bilinearity are less
interesting. Such considerations are pertinent to the overarching problem of find-
ing the relevant variables to describe and explain motor control. '

Although the macroscopic scale of analysis is crucial for the understanding of

long-memory dynamics, the potential neurophysiological basis of such effects has
also been investigated. In a study of the fluctuations in tidal volume during breath-
ing in the rat, R/S analysis revealed persistence, either H = .83 when largf:r bre'aths
(sighs) were included or H = .92 without sighs (Hoop, Kazemi, & Liebovitch,
1993). It was suggested that the persistence was due to the convergence of
small-scale spatio-temporal physiochemical processes at the molecular level and
large-scale spatio-temporal mechanisms acting at the neural and cellular le\'/el.
Further support came from a follow-up investigation of the correlated respira-
tory-related neural activity in the rat’s brain stem (Hoop, Burton, Kazemi, &
Liebovitch, 1995). It was found that although spontaneous activity of the brain
stem exhibited H = .5, when cerebrospinal fluid was introduced (containing the
respiration-related neurotransmitter ACh), H = .87, implying persistence in the
neural noise.

Other evidence of a neural correlate for long-term correlation has come from
investigations into the variability of the human monosynaptic reflex (Nozaki,
Nakazawa, & Yamamoto, 1995). Using the H-reflex paradigm, which permits an
evaluation of the excitability of the spinal a-motomeuron pool, it was found that
the variability of sequences of stimulation-induced H-wave responses exhibited
long-range fractal correlation. Because such correlations were not seen for the. se-
quences of the associated M-wave response, it was concluded that the correlations
could not be due to neural conduction or to transmission at the neuromuscular
junction but, instead, may be due to synaptic connections to Oi-motomeurons of
the spinal cord.

In the cases thus far described, a single linear scaling region was found implicat-
ing a single fractal power law that can be characterized with a single value of H, ei-
ther persistence or antipersistence. However, as with these results, recent research
has revealed crossover phenomena in naturally occurring processes whereby a
short-term scaling region H > .5 switches into a long-term region with H < .5.
Such a crossover was found in an R/S analysis of the voltage fluctuations of cell
membrane ion channels whereby persistence (H = .76) switched to antipersis-

tence (H = .26) at Teans = 0.5 sec with an upper limit on persistence of approxi-
mately 2 sec (Churilla et al., 1996). Similarly, a crossover was found in very long
time series (24 hr) of the interbeat intervals in heartbeat for normal and pathologi-
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cal (congestive heart failure) individuals (Peng, Havlin, Stanley, & Goldberger
1995). As in the study of interstep times during walking (Hausdorff et al. 1996)y
and the temporal errors during synchronized tapping (Chen et al. 199,7) the
heartbeat analysis took interevent times as the algorithm’s raw data. N’ote tha; this
is not a sequence of kinematic values such as instantaneous position or angle as in
our pole balancing experiment. Further, note that in our experiment the raw input
is a sequence of kinematic values such as instantaneous position or angle on which
we calculated R/S based on the range (R) in the raw (kinematic) values and the
standard deviation (S) of the increments, Ax. In the heartbeat (and walking) anal-
yses, the raw data were a sequence of effectively higher order temporal values
(interbeat intervals) together with the particular beat number at which that inter-
val occurred. Given the preceding clarification, it was shown that in the pathologi-
cal heartbeat data, for short time scales (less than 10-20 beats), the interbegat
intervals exhibited fluctuations characteristic of white noise (i.:e., the Fourier
power spectrum was independent of frequency yielding white, or 1/P, noise). That
is, the interbeat intervals in the raw time series were uncorrelated from one beat to
the next and would graphically correspond to an extremely jagged profile. Note
‘t‘hat the mFeg,ral or running sum of such incremental steps would yield Brownian or
brown noise” (e.g., see Figure 3; 1/f2 noise) and an uncorrelated random walk with
H = .5 (cf. Voss, 1989). Indeed, at the long time scale the interbeat intervals were
con:related and exhibited the smooth graphical profile characteristic of brown
noise. The transition between the short-term white noise and long-term brown
noise regions occurred at approximately 40 beats.
However, the pathological heartbeat results were in contrast to those of health
individuals in whom, over short time scales, correlated brown noise was found iZ
the interbeat intervals (similar to the pathological long time scale). Over long time
scales, highly correlated fluctuations were found such that the Fourier power spec-
trum was inversely related to the frequency (i.e., a 1/f power-law scaling; cf. Gilden
et al., 1995; Schmidt, Beek, Treffner, & Turvey, 1991). The transitic;n between
these two regimes occurred at an earlier time scale than for the pathological data
at z'approximately 10 beats. It was concluded that under extreme pathological con—’
ditions at short time scales, the heartbeat complex attempted to maintain a con-
stant interbeat interval with an uncorrelated white noise strategy of interbeat
intervals. In contrast, over long time scales, the heartbeat complex responded to
Perturbations from various factors by producing smooth variation in the interbeat
intervals reminiscent of Brownian motion. Results such as these and those of Chen
etal. (1997) may indicate that the control function of a complex system such as the
h.ea;t operates on the basis of inherently temporal quantities or, as has been exten-
Zl‘:'eeny;sl?é:st;g’alt:;g;)rr perception-action tasks, the relative timing (or phase) of
Crossover between scaling regions has also been found for diverse nonbiological sys-
tems including a transition at 14 days from persistent (H = .92) to random (H = .52) be-
havior for wave heights off the Norwegian coast (Feder, 1988) and the transitic'm from
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persistent (H= 1) to independent (H = .5) behaviorin the conductance fluctuations of a
current carrying pore (Berge, Rakotomalala, Feder, & Jossang, 1994). Further evidence
of crossover in biological systems is found in the extensive series of investigations into
postural control that involved recording the center-of-pressure time series from human
individuals standing on a force plate (Collins & De Luca, 1993, 1994, 1995a, 1995b;
Mitchell et al., 1995). In these studies, a critical pointat Trans = 1 sec was typically found
for the switch from persistence (H = .75) to antipersistence (H = .25). These results were
summarized in a model based on two coupled springs that realized a feedback strategy
whereby, during upright stance, the nervous system switches from open-loop to
closed-loop control (e.g., falling forward vs. pulling back; Collins & De Luca, 1993).
However, the notion that control requires information (i.e., feedback) only within the
closed-loop mode of control seems less than parsimoniousand incompatible with recent
results on information-based perception—action. An elegant example due to Bootsma
and van Wierengen (1990) showed that the previously thought of open-loop ballistic
movementofaforehandsmash in table tennisis in fact precisely controlled with the vari-
ability of movement of the order of 2 to 4 msec. .

Further support for informational closure comes from our analysis of the puta-
tive perceptual variables detected during pole balancing (Treffner & Kelso,
1995a). Following previous studies of the perceptual support for timing the uncurl-
ing of the body near the finish of a somersault and the ability to perceive when an
object pushed to its balance point will topple over (Cabe & Pittenger, 1992; Lee,
Young, & Rewt, 1992), we investigated whether the onset of decelerating the hand
was geared to time-to-contact information (tau or tau-dot) or instead to a less
higher order variable (e.g., hand position, rod angle, or their velocities). It was
found that the onset of hand deceleration (“braking”) coincided with the time of
the minimally varying visual variable (Wagner, 1982) and corresponded to the
rau-dot function of rod angle. The onset of deceleration followed 170 msec after
the time of minimal. variation in this potential perceptual variable (Treffner &
Kelso, 1995a). This supports a tau hypothesis that a very tightly coupled percep-
tion—action system underlies the ability to gear decelerative actions of the hand to
temporally specific perceptual variables of the rod (Turvey, Carello, & Kim, 1990).

Other research on perceptual-motor coordination brings into question the con-
clusion that persistence is indicative of open-loop ballistic motion and is separate
from antipersistence or closed-loop feedback-driven control. As shown by Engstrém,
Kelso, and Holroyd (1996), the often separate categories of reaction and anticipa-
tion may be better understood as two related modes of a unitary underlying coordina-
tion dynamics. We believe Collins and colleagues’ open- versus closed-loop
distinction is analogous to the misleading distinction between reaction and anticipa-
tion. In the study of Engstrdm et al. (1997), participants attempted to either tap in
synchronization, in anticipation or in reaction to a visual metronome at various pac-
ing rates. Depending on the parameterization of the dynamics via the control param-
eter of movement frequency, different modes (reaction vs. anticipation) emerged
with transitions between modes exhibiting many of the familiar characteristics of
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self-organized coordination dynamics. Such signatures of multifunctional systems
appear analogous to the dual persistence and antipersistence regimes of this stud
The major difference between the reaction—anticipation results and those of thY'
study is that the modes of persistence and antipersistence and the transition betw .
them reflect long-term, macroscopic, ensemble facets of the coordination ev::
rather than the more detailed dynamical aspects within a particular trial. To this ex-
tent, the reaction-anticipation transitions and the persistence—antipetsi;tence tran
sitions reflect complementary grains of analysis of spatio-temporal dynamic ev -
Related to the postural control studies of Collins and colleagues, a lon -mef:ts‘
analysis of postural sway during upright stance versus leaning and w:ith eyis o] enory
closed haTs underscored the informational underpinnings of the gersic:
tencefannpersistence transition (Riley et al., 1997). Averaged across all conditions
a persistent region (H = .73) and an antipersistent region (H = .27) were found’
However, it was shown that leaning not only reduced the degree of persistence but'
also the point of the persistence—antipersistence transition (leaning: Tirans = 0.25
secvs. upf'ight stance: Tyans = 0.37 sec). It was concluded that forward le::;“entaiied
less persistence because there was less need to actively explore the availabl
propnc?speciﬁc information specific to the limit of stability and, hence, its aﬂ‘ordine
potential danger (Riccio, 1993; Riccio & Stoffregen, 1988, 1991). Bec'ause leaning
made the limits of stability more proximal, the postural control system was cons'dg
ered to be more attuned or sensitive to the information specific tosuch boundari ‘ I}
propriospecific information is available in the short time scale and is utilizedanes'
pose'd. this would provide further evidence against the hypothesized mecha:isstl: g;'
Coll'ms et a.l. (1993) that the nervous system effectively ignores any available infor-
mation during the persistent (“open-loop”) regime. Further reasons for doubting the
two-process model of Collins and De Luca (1993) include the random-walk anagl i
of postural control by Newell et al. (1997). Although corroborating the findi YSI;
sh9n» and long-term regions of correlation, they considered their data tobe mo:'leg C;
ficiently captured by a simpler linear stochastic model that avoided an explicitt:l—
two-process mechanism. We agree with their conclusion that various forms of feedY
back must be available and operate continuously, although we are not committed
any particular instantiation of the dynamics. mmecte
Riley et al. (1997) also suggested that suprapostural goals and various goal-di
rectefl tasks, as well as environmental constraints (e.g., body dimensionsg as‘ g
metric to9ls). may play a hitherto much underappreciated role in the or, n'izatYm .
of dy'namlcally stable tasks. We concur and offer these results as suggestifz that :;J'f
namic encounters such as generic balancing tasks and postural control depend oy
;l;; irlfi:tlstl(czn of el?\l'li)l'on;lnental plroperties (e.g., rod natural frequency) to ac‘:on ca!j
.g., skill), thus resulting in differi i
oo i ulting in differing performance (e.g., persistence—
. Of significance in the long 30-min continuous balancing trial was the findin
thaF all correlation was lost beyond a finite temporal limit. Thus, the long-t :
anticorrelation (antipersistence) exhibited in the rod angle did no; extend igndeerfr":
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nitely but only as far as 3.4 min into the past, after wbich H = .5. Such extended
long-memory effects are surprising given the assumption that human movement
cannot be correlated with motions that occurred more than a few.moments prior lto
the current state and certainly not those that occurred severa} m}n'utes previously.
If a relation with the effects of past experience is deemed to exist, it is typically han-
dled under the aegis of “memory,” either short or long te.tm. In contrast, these re-
sults indicate that long-memory effects are an imp.licu part otj the stochastic
dynamics and looking for a particular storage mechanism with which to cl:‘onsftruct
all the psychological complexity of conceptual and memory structure, .ext er unIc-
tional or neurophysiological, may be somewhat misguided (Tr'effner, in pr;ss)" r;
effect, perception—action systems may not only be self—c?rgamzed on tllxe f::sns (;
spatial pattern formation principles but also on the basis of the ge.nem’:l,_ “acta&:
temporally nonlocal structure of natural processes and events (e.g., Dmg: Tu fef:l.
Kelso, 1995; Gilden, Thomton, & Mallon, 1995; Schmidt et al., 1991; Treffner,
1997; Treffner & Turvey, 1993; West & Deering, 1996). Because such a perspec-
tive focuses on event structure, it might help clarify the nature of the memory m-f
volved in recognizing or playing an intrinsically long-term event suchasa plec; ol
music (Jones & Boltz, 1989; Levitin & Cook, 1996). Indeed, it has been shown t ac;
much music from diverse cultures exhibits the precise blend of mndo@ness fmf
predictability characteristic of the self-similarity and long-term correlation o hl/
noise (Voss, 1989). That is, the rises and falls (increments) of a melody are neither
as fluctuating and random as white noise (H = .5) nor as predxc'table anfi uninspir-
ing as brown noise (H = 1.0) but are intermediary, that is, 1/ noise (cf. Flgured3)l.1
Perceptual psychologists from the ecological persuasion have lopg argued that
there are well-defined, measurable invariant quantities embeddec? wtth'm changm.g
structured energy distributions (such as light or sound) and these invariants consti-
tute the basic, fundatmental informational quantities that. nervous systems (.ietect
and on which the perception of meaningful events is l.aasefl (e.g., .beson,
1979/1986; Kelso, 1994; Reed, 1996). For example, t'he optical mformatlon1 ;ggt
specifies the very long-term event of facial aging (Kim, Ef?ken, & Shaw, 95
Warren & Shaw, 1985) or the optical information that specifies the time remain-
ing until contact with an approaching surface (Lee., Young, & Rewt, 192}2‘) may
both involve invariant quantities that lawfully specify a temporal event either ex-
tending from the past to the present (as in aging) or, converse'ly, from the present
to the future (as in approaching a surface). Accepting the reciprocity of organism
and environment and of perception and action (e.g., Re.ed, 1996; Turvey et al.,f
1990), and if perceptual information can directly specify change and styles o
change within temporal events (Kim et al., 1995), then we shou!d expect concomli
tant actions such as maintaining an upright posture to possess sngmﬁcant tempora
structure. The persistent and antipersistent character of fu'nctlonal stabilization
would appear to satisfy the preceding reciprocity-based requirements. dered
Ultimately, the commensurability of perception apd action may be considere
the ecological basis (anchored in persistence and antipersistence) on which a spe-
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cies can evolve the capacity for epistemic contact with the environment at multi-
ple scales of informational specificity. The basis for such contact has been cogently
argued to be the lawful spatio-temporal regularities in the ecological context of the
organism, not internal mental representations (Gibson, 1979/1986; Mace, 1977;
Reed, 1996). If 5o, then the individuals of a species could exploit their capacity for
the direct apprehension of both long- and short-term temporal events. This would
provide the basis for selection and adaptation and, ultimately, for mechanisms of
development and skill acquisition (Thelen & Smith, 1994),

In a related context, Gibson (1979/1986) developed the concept of an
affordance to capture the real, tangible, persisting opportunities for action that ex-
ist in the environment. An affordance constitutes an environmental resource for
the members of a species (Reed, 1996). Because ecological information exists for
resource specification and detection by an appropriately attuned perceptual system
and because resources are defined with respect to a species and not a particular in-
dividual, it is the availability of such resources in the environment that creates se-
lection pressure on the members of aspecies (Reed, 1996). It is in this respect that
the temporal structure of persisting events may help explain how newly born mem-
bers of a species arrive well prepared for the immediate and direct perception of po-
tentially critical events in their environments (Thelen & Smith, 1994). The basis
for such temporal continuity may be no less “genetic” in origin than it is dynamical
in the sense described previously.

As argued by Reed ( 1996) with respect to the species-level definition of
affordances, a complete description of the dynamics of encounters may require an
analysis of more than the individual, Thatis, it requires the introduction of individ-
uals from the individual’s historic past. Again, this does not imply the adoption of
genetic determinism, notwithstanding the existence of very long-range correla-
tions and persistence in DNA sequences (Voss, 1992, 1994). Rather, it impels con-
sideration of new ways to account for behavioral continuity and relatedness across
generations (Goodwin, 1994). For example, Hurst analysis of the physical environ-
ment reveals that “the span of statistical interdependence of geophysical data is in-
finite ... that such span is longer than the longest records so far examined”
(Mandelbrot & Wallis, 1969, p. 335). Investigation into the dynamical basis for
long-range correlations at the evolutionary time scale may usefully jolt the debate
on the nature of evolutionary persistence. In a recent dialogue in this journal
(Coss, 1993) on how animals retain perceptual biases from former historic periods
of natural selection, it was argued that:

The evolutionary persistence of brain states restraining information as process can be
viewed as an inherent property of the animal-environment system at multiple levels of or-
ganization embedded within phylogenetic, ontogenetic, and proximate time scales of
change. ... Whatis critical in this dialogue is the need for further discussion about how

perception and action are constrained by particular biases arising from historic evens.
(pp. 190191, italics added)
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From the current perspective of fractal time and long-memory effects, an indi-
vidual's temporally extended encounter with its environment constitutes the rele-
vant historical bias, but this encounter is not necessarily encoded in the memory
circuits of the brain, even if the nervous system is the requisite material substrate.
Rather, the influence of prior events on the present is best approached with the
recognition that long memory is an inherent, irreducible, macroscopic property of
the spatio-temporal dynamics of organism—environment encounters.

Furthermore, affordances have differing consequences for an organism depend-
ing on the affordance’s degree of persistence or antipersistence and, hence, its rele-
vance for commensurate activities. These differing time scales and styles of change
lead to a crucial constraint on the kinds of skills an animal will develop and can
learn (Thelen & Smith, 1994). For example, in this task, learning to balance a
short rod of higher natural frequency took longer and consequently seemed more
difficult than leamning to balance a long rod of lower natural frequency. Ease of per-
formance was revealed in the eatlier transition from persistence to antipersistence
for the short rod.

The foregoing conclusions on long-term, fractal, perception—action events may
be less than surprising when viewed from the perspective of the theory of informa-

tion-based event perception:

Events of all types, as I said above, have a component of change and a component of
persistence. ... Assuming that shorter events are nested within longer events, that
nothing is instantaneous, and that sequences are apprehended, the usual distinction
between perception and memory comes into question. For where is the borderline be-
tween perceiving and remembering? Does perceiving go backward in time? For sec-
onds? For minutes? For hours? ... The optic array itself is neither frozen nor chaotic;
only so could an observer detect what is changing and what is persisting in the world at
the same time. The coexistence of variance with invariance in a changing pattern is
perfectly easy to define mathematically. (Gibson, 1975, pp. 298-299)

The finding that fractal long-term correlations exist within the dynamics of per-
ception—action suggests that revealing the persistence or antipersistence within
continual change provides some understanding of the temporal integrity underly-
ing dynamic encounters. Employing a metaphor, we might call the dynamical
mechanisms underlying perception-action the syntax of behavior, whereas consid-
eration of the affordances reveals the semantics of experience. However, these two
perspectives may not be as polarized as the metaphor or recent critiques of ecologi-
cal psychology have suggested (e.g., Michaels & Beek, 1995). Rather, informa-
tion-based mechanisms of coordination dynamics (Kelso, 1994) and informa-
tional-based specification of affordances (Gibson, 1979/1986) both share the ob-
jective of defining the higher order invariants on which various perception-action
behaviors are based. The only significant difference between these approaches is
the degree of abstraction in the higher order invariant (and consequently the na-
ture of the “information”) assumed to organize the perception—action system, Eco-
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!ogical optics seeks to reveal the higher order invariant within optical change that
is detected and onto which action is geared, whereas coordination dynamgics at-
tempts to identify the potentially more abstract invariant (order parameter) on
\\_/hich coordinated perception and action is self-organized (cf. perceptual informa-
tion vs. information-based dynamics). As we have attempted to illustrate, these are
best viewed as complementary endeavors working at different scales of al';straction
Thu.s, a challenge for future ecological investigation is to reveal the commensurate.
spatio-temporal structure common to both the dynamical interaction with an
affordance and its informational (e.g., optical) specification. It is anticipated that
further investigation of dynamical mechanisms will further our appreciation of the
meaningful relation that couples the invariants of action and those of perception.
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